致密碎屑岩储层岩石破裂特征及脆性评价方法

王升1,2,3, 柳波1,2, 付晓飞1,2, 赵万春1,2

(1. 东北石油大学 非常规油气研究院, 黑龙江 大庆 163318；2. 东北石油大学 “非常规油气成藏与开发”省部共建国家重点实验室培育基地, 黑龙江 大庆 163318；3. 东北石油大学 电子科学学院, 黑龙江 大庆 163318)

摘要: 研究致密碎屑岩储层岩石破裂特征及脆性评价方法对致密油压裂优化设计具有重要意义。文章以辽河盆地沙河街组致密碎屑岩储层为对象，开展了不同岩石样的三轴压缩实验，分析了宏观破裂行为和压后岩石显微裂缝的发育类型，通过对比常规的弹性能参数法和矿物组分法等脆性评价方法，建立了基于三轴压缩破裂过程中能量守恒的新脆性评价方法。实验表明，岩石破裂特征受控于岩石宏观和岩石内部的应力条件。一方面，脆性较强的岩石主要发育穿晶 Diagnosis裂缝，随着脆性程度减弱，裂缝数量逐渐减少，类型则以晶内裂缝为主；另一方面，随着岩层增加，压后岩石内部微细裂缝类型从穿晶裂缝向晶内裂缝过渡，说明岩层极大地抑制了微裂缝的扩展。传统弹性参数法表征的脆性结果与实验描述的脆性破裂特征相左(即脆性指数高，而岩石破裂程度小)，而矿物组分法不能描述不同岩层下岩石的脆性程度。本文提出的新脆性评价方法，可以连续地描述岩石从脆性到韧性变型的力学演化过程，脆性指数不仅与岩石的性能参数有关，而且还与破裂应力参数(如软化模量)有关。利用该方法表征了不同岩层下致密砂岩储层的脆性程度，其结果与实验描述岩石脆性破裂特征相符，证实了方法的可行性。

关键词: 脆性指数;三轴压缩实验;固压;岩石破裂;致密储层;致密油

中文分类号: TE135 文献标识码:A

Evaluation of the brittleness and fracturing characteristics for tight clastic reservoir

Wang Sheng1,2,3, Liu Bo1,2, Fu Xiaofei1,2, Zhao Wanchun1,2

(1. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing, Heilongjiang 163318, China; 2. State Key Laboratory Base of Unconventional Oil and Gas Accumulation and Exploitation, College of Earth Science, Northeast Petroleum University, Daqing, Heilongjiang 163318, China; 3. College of Electronic Science, Northeastern Petroleum University, Daqing, Heilongjiang 163318, China)

Abstract: The way to evaluate the fracturing characters and brittleness of tight clastic reservoir is of significant value for optimizing hydraulic fracturing design of tight oil reservoir. We performed tri-axial compression experiments on rock samples of various lithologies taken from the tight clastic reservoir in the Shahejie Formation, Liaohe Basin, analyzed the macroscopic fracturing behaviours and the types of microscopic hydraulic fractures. After considering such brittleness evaluation methods as conventional elastic parameter method and mineral composition method, a new method to evaluate rock brittleness was proposed based on the conservation of energy during triaxial compression. The experimental results show that the fracturing characteristics of rocks are controlled by rock brittleness and its confining pressure. On the one hand, rocks with higher brittleness usually develop transgranular tension cracks, and as the brittleness declines, the number of cracks decreases and the cracks are mainly intragranular. On the other hand, the confining pressure greatly refines the propagation of micro-fractures, since the transgranular tension cracks turn into intragranular cracks as the confining pressure increases. The brittleness obtained with conventional elastic parameter method is just opposite to that obtained through experiments (i.e. the brittleness is high, but the fracturing degree of rock is low), while the mineral composition method cannot be used to differentiate the degrees of rock brittleness under different confining pressures. The new method...
proposed in this study can describe the complete mechanical evolution process of rocks transforming from super brittle to ductility. The brittle indexes are correlated not only with pre-peak Young’s modulus but also with post-peak stress gradient (softening modulus). All in all, the method can be used to describe the tight sandstone brittleness under different confining pressures, and the results coincide with the fracturing behaviours of rock obtained through experiments, verifying the feasibility of the method.

Key words: brittleness index, triaxial compression experiment, confining pressure, rock fracturing, tight reservoir, tight oil

致密油是继页岩气之后非常规油气藏勘探开发领域的新研究热点。致密油在我国分布广泛且潜力巨大，由于储层致密、岩性复杂，均需采用压裂工艺改造，以获得工业产能。[1] 压裂的成功与否与岩体脆性密切相关，脆性程度高，容易产生大量的压裂裂缝且很大程度上保持开启。脆性评价是体积分裂设计中首要考虑的重要因素之一，也是判断“七性关系”研究的重要内容之一。[2] 我国学者将脆性评价列为非常规致密油藏划分的五项关键评价技术之一，与优质烃源岩、优质储集层、地应力评价及地震属性综合预测技术同样重要。[3]

Jarvie 矿物组分法。岩石脆性是岩石力学性质的一种表现，矿物成分是影响力学性质的内部因素，因此岩石矿物成分与脆性之间必然有直接的相关性。Jarvie 等[30]根据页岩矿物组合来表征岩石脆性，认为页岩中石英脆性最强，方解石中等，粘土最差。提出矿物组分脆性指标 (MBI)：

$$MBI = \frac{V_{石英}}{V_{石英} + V_{碳酸盐矿物} + V_{粘土}}$$

式中：$V_{石英}$，为岩石中石英矿物体积含量，%；$V_{碳酸盐矿物}$，为碳酸盐矿物体积含量，%；$V_{粘土}$，为粘土矿物体积含量，%。

在北美页岩气开发实践中，采用三端元图解[31]分析有利区域页岩的矿物成分，并将结果录入数据库，通过统计方法来评价储层页岩的脆性[28]。有些学者通过对测试砂岩孔隙度和泥质含量以及砂岩中石英含量来评价脆性。[32] 但这类评价方法仍然缺乏可靠性，一方面岩石矿物组分多种多样，仅靠这两种矿物含量来表征显得精确性不够，且需要大量岩心分析资料进行刻度，另一方面，石英、泥质矿物随着地质条件的改变脆性是可以转化的，即使具有相同矿物组成的岩石，由于其力学环境的不同也可能表现出差异极大的脆性破裂特征，因此这种评价方法缺乏岩石物理基础[33]。

Rickman 弹性参数法。一般认为杨氏模量越高，泊松比越低的岩石脆性更强。[34] Rickman[25] 专门针对北美 Barnett 页岩的岩石力学参数，计算归一化杨氏模量和泊松比平均值作为脆性指数 (EBI) 来评价岩石脆性程度。

$$EBI = \frac{1}{2} \left(\frac{E - E_{min}}{E_{max} - E_{min}} + \frac{\nu_{max} - \nu}{\nu_{max} - \nu_{min}} \right) \times 100$$

式中：E 为岩石杨氏模量，GPa；ν 为岩石泊松比，无量纲；E_{max}、E_{min} 分别为岩样中最大和最小泊松比值。

Mosher[35] 通过原子力显微镜测量出岩石内部每种矿物的杨氏模量和泊松比，从微观上精细地评价了脆性。但我国部分油田采用这种方法评价脆性时，
表1 脆性指数的定义及分类

<table>
<thead>
<tr>
<th>类型</th>
<th>脆性指数定义</th>
<th>描述</th>
<th>提出人</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_1 = e_c \cdot 100%$</td>
<td>试样破坏时不可恢复的轴应变。$e_c < 3%$脆性; $3% - 5%$脆性; $> 5%$ 脆性</td>
<td>George [14]</td>
<td></td>
</tr>
<tr>
<td>$R_2 = \sin \varphi$</td>
<td>内摩擦角的正弦值</td>
<td>Hucka 等 [15]</td>
<td></td>
</tr>
<tr>
<td>$R_3 = 45\varphi + \varphi/2$</td>
<td>破裂限内摩擦角 φ 的函数</td>
<td>Aubertin [16]</td>
<td></td>
</tr>
<tr>
<td>$R_4 = e_c/e$</td>
<td>可恢复应变 e_c 与总应变 e 的比值</td>
<td>Hajiabdolmajid [17]</td>
<td></td>
</tr>
<tr>
<td>$R_5 = A_1/A_4$</td>
<td>峰值后变形模量为斜率所作直线下的面积为 A_1; 加载曲线下的面积为 A_4</td>
<td>Hajiabdolmajid [18]</td>
<td></td>
</tr>
<tr>
<td>$R_6 = (e_c^+ - e_c^-)/e_c^-$</td>
<td>e_c^+ 和 e_c^- 分别为摩擦强度和粘聚力分别达到最终极限值时的塑性应变</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 2 不同岩性的宏观破裂模式与微观显微裂缝的差异

Table 2 Differences between macroscopic fracturing patterns and microscopic microcracks for different lithologies

<table>
<thead>
<tr>
<th>编号</th>
<th>深度/m</th>
<th>岩性</th>
<th>应力-应变曲线</th>
<th>单轴下破裂模式</th>
<th>单轴下显微裂缝</th>
<th>裂缝特征</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-1</td>
<td>3340</td>
<td>粉砂岩</td>
<td></td>
<td></td>
<td></td>
<td>穿粒张裂缝</td>
</tr>
<tr>
<td>s-2</td>
<td>3341</td>
<td>粉砂岩</td>
<td></td>
<td></td>
<td></td>
<td>穿粒张裂缝</td>
</tr>
<tr>
<td>s-3</td>
<td>3342</td>
<td>粉砂岩</td>
<td></td>
<td></td>
<td></td>
<td>穿晶张裂缝</td>
</tr>
<tr>
<td>s-4</td>
<td>3354</td>
<td>碎屑岩</td>
<td></td>
<td></td>
<td></td>
<td>储层开裂，泥质带，无裂缝</td>
</tr>
<tr>
<td>l-93</td>
<td>3076</td>
<td>泥页岩</td>
<td></td>
<td></td>
<td></td>
<td>穿粒张剪裂缝</td>
</tr>
<tr>
<td>l-97</td>
<td>3023</td>
<td>泥页岩</td>
<td></td>
<td></td>
<td></td>
<td>穿粒张剪裂缝</td>
</tr>
</tbody>
</table>
（发育穿张剪裂缝或发育穿张剪裂缝）、以及含储层沥青质碎屑岩（发育泥质纹层，储层沥青，裂缝不发育）。表明岩石中的泥质成分极大的抑制了微裂缝的扩展，其含量越小，岩石越显脆性。

1.2 围压对致密储层脆性破裂的影响

为了研究围压对致密储层脆性破裂的影响，针对粉砂岩 s-1 样品在室温下开展了不同围压的三轴压缩试验，获取岩石破裂模式和应力～应变曲线（图 1 所示）以及岩石力学参数（表 3）。从破裂模式上，随着围压的增大，破裂剪切角增大，剪切缝长度减小，因此围压效应抑制岩石脆性破裂。同时从表 3 中可以看出，围压越大，岩石杨氏模量越大。在偏光显微镜下也可以明显看出，当围压为零时，发育穿张裂缝（图 2a），当围压增加为 15.24 MPa 时，局部发育多条晶内裂缝（图 2b），但当围压增加为 35.9 MPa 的时，在薄片上很难发现裂缝，或只发育单一晶内剪裂缝（图 2c）。因此对于致密储层，围压变化，极大地影响了岩石的脆性破裂模式。

2 致密储层脆性评价方法

2.1 常规方法表征致密储层脆性

基于岩石力学参数的测试和全岩分析，利用各油气田常用的弹性参数法 [式 (1)] 和矿物组分法 [式 (2)]，分别评价表 3 中的 6 组样品在单轴压缩下的脆性指标（表 3）。对于弹性参数脆性指标 (EBI)，只能描述表 3 中 6 组样品的相对脆性。表 3 中，碎屑岩 (s-1, s-2, s-3) 脆性指标小于含储层面沥青质碎屑岩 (s-4)，该结果与上述宏观破裂模式和微观显微裂缝分析结果相反，因此利用弹性参数法不能准确表征该区域致密储层的脆性，可能是原因是该岩石样品中粘土体积含量 $V_{\text{clay}} <$

![图 1 样品 s-1 三轴应力-应变曲线和宏观破裂模式](image)

Fig. 1 Stress-strain curves and macroscopic fracturing modes of sample s-1 under triaxial compression

a.应变～应力曲线上；b. $\sigma_3 = 0$ MPa 时的宏观破裂模式；c. $\sigma_3 = 15.24$ MPa 时的宏观破裂模式；d. $\sigma_3 = 35.9$ MPa 时的宏观破裂模式

<table>
<thead>
<tr>
<th>表 3 基于致密储层岩石力学参数与全岩分析计算脆性指标</th>
</tr>
</thead>
<tbody>
<tr>
<td>表 3 Britteness index calculated by rock mechanical parameters and whole rock analysis for tight reservoir</td>
</tr>
</tbody>
</table>

| 编号 | 岩性 | 弹性模量/GPa | 泥质比 | 石英 | 钾长石 | 斜长石 | 方解石 | 铁白云母 | 白云母 | 萤铁矿 | 粘土矿物 | 粘土矿物脆性指数 EBI | 脆性指数 MBI |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| s-1 | 粉砂岩 | 29.4 | 0.12 | 36.0 | 18.4 | 34.9 | 1.2 | 1.1 | 8.4 | 44.62 | 0.77 |
| s-2 | 粉砂岩 | 24 | 0.1 | 39.0 | 18.9 | 27.3 | 3.4 | 1.4 | 9.3 | 43.02 | 0.73 |
| s-3 | 粉砂岩 | 27.8 | 0.04 | 38.4 | 13.2 | 30.9 | 1.1 | 2.2 | 52.76 | 0.72 |
| s-4 | 碎屑岩 | 63.2 | 0.16 | 34.5 | 15.0 | 27.6 | 9.1 | 1.9 | 12.0 | 64.53 | 0.62 |
| 1-93 | 泥页岩 | 69.7 | 0.10 | 33.2 | 14.2 | 6.7 | 19.9 | 26.1 | 93.02 | 0.50 |
| 1-97 | 泥页岩 | 80.6 | 0.47 | 22.6 | 26.3 | 8.7 | 6.8 | 7.8 | 27.8 | 46.15 | 0.40 |

注：脆性指数 $EBI = \frac{1}{2} \left(\frac{E - E_{\text{min}}}{E_{\text{max}} - E_{\text{min}}} \right) \left(\frac{V_{\text{clay}} - V_{\text{min}}}{V_{\text{max}} - V_{\text{min}}} \right)$，其中 $E_{\text{max}}, E_{\text{min}}, V_{\text{max}}, V_{\text{min}}$ 分别为上述岩样中最大和最小杨氏模量值，V_{min}，分别为上述岩样中最大和最小泥质比值。

脆性指数 $MBI = \frac{V_{\text{clay}}}{V_{\text{石英}} + V_{\text{钾长石}} + V_{\text{粘土}}}$，其中 $V_{\text{石英}}, V_{\text{钾长石}}, V_{\text{粘土}}$ 分别为上述各岩样中石英含量，钾长石含量，粘土的总矿物中体积含量。
15%，颗粒支撑岩石，粘土矿物对岩石弹性参数无贡献[30]，但粘土矿物的存在极大地抑制了岩石裂缝扩展；对于矿物组分脆性指标（MBI），粉砂岩的脆性指标大于含储层沥青碎屑岩和泥页岩，与实验描述相符，但含储层沥青碎屑岩的脆性指标大于泥页岩，与实验描述不吻合。各矿物在不同成岩作用下或地应力下，可能表现出差异极大的脆性破裂特征[31]，正如上述实验表明随围压的增加，岩石脆性破裂受到明显的限制（图 2）。

2.2 基于峰值后能量守恒原理评价岩石脆性

2.2.1 脆性指标的提出

脆性是岩石一种重要的力学变形属性，反应岩石在应力作用下的破裂作用和断裂程度。岩石宏观断裂行为直接反应了岩石脆性程度，而这种断裂行为在三轴压缩实验中主要体现为峰值后的力学变形特征，其变形机理实质上是能量转化的过程。

在三轴压缩实验中，完整岩石在加载过程中首先发生弹性变形，到达屈服强度后，岩石将经历不可恢复的非弹性变形，直到峰值破裂强度（即破裂临界点），岩石开始破裂。这个过程中岩石始终在积累弹性势能，其弹性形变性质用弹性模量 $E = \frac{d\sigma}{d\varepsilon}$ 来表征。达到峰值强度后岩石破裂，并向外界释放能量。能量释放形式与峰值后破裂行为有关，其力学特征体现在峰值后应力-应变行为的变化。岩石达到峰值强度后，应力随应变开始减小，直到岩石完全破裂（剩余应力为残余应力），并形成断裂面开始滑动，[33]。在这个过程中（图 3 中 BC 段），岩石破裂越明显，峰值后应力减小程度越显著（应力释放）。为此，本中把峰值后单位应变内应力降强度变化（$d\sigma/d\varepsilon$），定义为峰值后软化模量 M，该值越大，表征破裂过程中，形成断裂裂缝的开度越大，或数量越多，向外释放能量越多，岩石越显脆性。例如当 M 为无穷，那就意味岩石破裂后应力立即降为零，并向外界释放大量能量，把这一变形称为理想的脆性变形。

峰值后软化模量（$M = \frac{d\sigma}{d\varepsilon}$）形式有两种（见图 3），第一种破裂行为 $M < 0$，表示岩石在破裂过程中，不断向外界吸收能量，即应力对岩石做正功；第二种破裂行为 $M > 0$，表示岩石在破裂过程中，不断向外界释放能量，即岩石向外界做功，应力对岩石做负功。根据峰值后破裂过程中能量守恒原理[12]，岩石破裂过程中所需的破裂能 ΔW_R 为消耗的弹性能 ΔW_e 与岩石向外界吸收能 ΔW_a 之和：

$$\Delta W_R = \Delta W_a + \Delta W_e$$

式中：ΔW_R 为峰值后岩石完全破裂所需的破裂能，ΔW_a 为峰值后岩石完全破裂外界向系统提供的吸收
能，$J_{\Delta W_e}$ 为峰值后岩石完全破裂所消耗的弹性能，J。

公式 (3) 中，对于第一种破裂行为 $\Delta W_a > 0$，表示岩石在应力作用下从外界吸收能量；第二种破裂行为 $\Delta W_a < 0$ 表示岩石以热能或碎片的势能释放能量。假设 B, C 点的杨氏模量相等，都等于未加载时岩石的弹性模量 E，从加载到 B 点或 C 点时，然后卸载，卸载的应力路径的曲线斜率认为与 OA 段加载的路径斜率相等。红色点线围成的三角形的面积为 B 或 C 点的弹性能，$B - C$ 过程中消耗的弹性能 ΔW_e 为三角形面积；$B - C$ 过程中岩石吸收的 ΔW_a 为 BC 曲线与对称轴围成的面积。第一种破裂特征为黄色点线围成梯形的面积；第二种破裂特征为黄色区域的面积；$B - C$ 过程中岩石完全破裂所需的能量 ΔW_r 为灰色区域的面积。因此可以理解为应变曲线，计算相应面积来表示岩石 $B - C$ 破裂过程中所涉及的能量。

消耗的弹性能 ΔW_e:
$$\Delta W_e = \frac{\sigma_e^2 - \sigma_c^2}{2E}$$

吸收能 ΔW_a:
$$\Delta W_a = \frac{\sigma_c^2 - \sigma_e^2}{2M}$$

破裂能 ΔW_r:
$$\Delta W_r = \Delta W_e + \Delta W_a = \frac{(\sigma_e^2 - \sigma_c^2)(M - E)}{2EM}$$

式中：E 为岩石的杨氏模量 (OA 曲线段斜率)，GPa；M 为峰值后平均硬化模量 (BC 曲线段斜率)，GPa；σ_e 和 σ_c 分别为峰值应力和残余应力，GPa。

值得注意的是如果吸收能为负 ($\Delta W_a < 0$)，那意味着岩石破裂前积累的弹性能大于岩石的破裂能，即 $\Delta W_e > \Delta W_r$。表明 ΔW_e 中一部分能量导致形成大量裂缝，同时一部分能量从裂缝中以热能或运动学形式释放出去，其值为 $|\Delta W_a|$ (释放能)。所以能 $|\Delta W_a|$ 能协助岩石破裂，有独立维持破裂能量，一旦岩石开始破裂，其破裂行为不可控制，因此此能量越大，岩石韧性越强。如果吸收能为正 ($\Delta W_a > 0$)，那意味着岩石破裂前积累的弹性能小于岩石破裂能，即 $\Delta W_e < \Delta W_r$，此时岩石储存的弹性能不能促使岩石形成裂缝而完全破裂，因此需要应力对岩石做功，从外界吸收能量 ΔW_a，降低破裂能，最终使岩石发生宏观破裂。所以在破裂过程中，消耗的弹性能在破裂能中所占比例越大，岩石越显脆性。当 $\Delta W_e = \Delta W_r$，表示理想脆性，$\Delta W_e > \Delta W_r$ ($\Delta W_a < 0$) 为超脆性 [12]。为此提出评价岩石脆韧性指标 (BDI) 为：
$$BDI = \frac{\Delta W_e}{\Delta W_r}$$

式 (5) 和 (6) 代入式 (7)
$$BDI = \frac{M}{M - E}$$

由式 (8) 可知，岩石脆韧性即依赖于完整岩石的弹性模量 E，也依赖于峰值后的岩石破裂行为，即软化模量 M。弹性模量是表征岩石固有的物理量，由岩石内因因素决定，与岩石的矿物成分、粒度、孔隙度与岩石结构等有关，而软化模量不仅与岩石的内在结构有关，还对外界因素（例如压力、温度与孔隙流体压力）很敏感 [40]。因此一般认为岩石的脆韧性受控于岩石内部结构和外在因素。

根据能量与脆韧性之间的内在关系，构建新的脆性指标 BDI，定义岩石从超脆性到应变硬化韧性变换的演变过程。可将岩石变形特征定量地划分为 4 个阶段 (图 4)。超脆性阶段 ($BDI > 1$)，$M > 0$，$(\Delta W_e = \Delta W_r)$ 石岩破裂过程向外释放能量，具有独立维持破裂的能力，破裂过程不可控制；$M = \infty$，$(\Delta W_e = \Delta W_r, \Delta W_a = 0)$ 时，$BDI = 1$，表征理想脆性。脆性转变阶段 ($0.5 < BDI < 1$)；岩石破裂过程消耗的弹性能 ΔW_e 大于破裂能 $\Delta W_r/2$，应力降明显，岩石宏观上容易发生剪切破裂；$E = M$，$(\Delta W_e = \Delta W_r/2)$ 时，$BDI = 0.5$，表征半脆性 (脆性向脆-韧性过渡)。脆-韧性转变阶段 ($1 < BDI < 0$)；消耗的弹性能 ΔW_e 小于破裂能 $\Delta W_r/2$，应力降较小，岩石宏观上破裂不明显；$M = 0$，$(\Delta W_e = 0, \Delta W_a = \Delta W_r)$ 时，$BDI = 0$，应力降为零，为理想塑性 (脆-韧性向韧性变形转移过渡)。韧性变化 ($BDI < 0$)；无应力降，岩石不发生宏观破裂，为应变硬化过程。

2.2.2 新方法评价致密储层的脆性程度

由峰值后软化模量的定义，通过峰值后应力 - 应变曲线的斜率即可得到软化模量的大小 $M = d\sigma /de$，实际力学测试中峰值后应力 - 应变曲线不是直线，因此不同应变处对应的软化模量值不同，这样通过 M 的变化可以精确地评价岩石峰值后破裂演化过程。但文中未假设峰值后应力 - 应变曲线为直线 (图 3 中 BC 段)，基于峰值能量守恒推导出脆韧性指标 (式 8)，为此实际应用中，式 (8) 中 M 应表示峰值后平均软化模量，定义为：“

```
```

式中: σ_a 和 σ_c 分别为峰值应力和残余应力, GPa; ε_a 和 ε_c 分别为峰值应变和残余应变; M 为峰值后平均软化模量, GPa。

通过岩石力学测试的应力－应变曲线数据即可计算出峰值后平均软化模量 (M), 以及杨氏模量 (E), 利用等式 (8), 计算岩石脆性指标 (BDI), 表征岩石的脆性程度 (表 4)。由表 4, 对于单轴压缩, 粉砂岩平均脆性指标 $BDI_{粉砂岩} = 0.73$, 泥页岩的平均脆性指标 $BDI_{泥页岩} = 0.63$ 都处于脆性变形阶段; 含储层沥青的粉砂岩脆性指标 $BDI_{含储层沥青粉砂岩} = 0.59$ 接近于岩石半脆性点, 由此可见, $BDI_{粉砂岩} > BDI_{泥页岩} > BDI_{含储层沥青粉砂岩}$; 而对于三轴压缩, $s = 1$ 样品随着围压增加, BDI 减小, 岩石脆性减弱; 这些理论结果与实验测试岩石宏观破裂模式和显微裂缝分析相一致。另外, 从微观破裂特征与脆性指标 BDI 对应关系分析, 对于含油性碎屑岩 $(s = 4)$ 与围压为 35.9 MPa 的粉砂岩 $(s = 1)$ 脆性指标相同为 0.59, 其微观变形特征都表现为少见裂隙; 而对于单轴压缩下的样品 $(s = 1, s = 2, s = 3)$, 脆性指标相近约 0.7 左右, 对应显微变形特征都发育穿晶张裂隙, 本文提出脆性指标更能表征岩石脆性破裂特征。对于传统表征方法 (表 3), 样品 $(s = 1, s = 2, s = 3, 1 - 93)$ 的微观破裂特征都发育明显穿晶张裂隙, 但对相应的脆性指标 EBI 值存在很大差异 (分别为 44.62, 43.02, 52.76, 93.02)。而且含油性碎屑岩 $(s = 4)$ 的 $EBI = 64.53$, 大于粉砂岩样品 $(s = 1, s = 2, s = 3)$ 的脆性指标, 显然表征结果与实验测试脆性破裂特征不相符。因此本文提出新脆性指标是合理的, 可以用来准确的评价辽河盆地致密储层脆性程度。

结论

1) 从岩石破裂模式描述, 脆性较强岩石表现为发育多条较小剪裂破裂角(压缩方向与破裂面的夹角), 开度较大的断裂缝; 从岩石微观显微裂缝类型分析, 脆性较强岩石破裂后内部发育穿粒张裂缝, 而脆性较弱岩石内部发育穿内微裂缝或不发育裂缝。

2) 粉砂岩为脆性较强岩石, 单轴压缩试验后, 宏观破裂明显, 内部发育穿粒张裂缝, 发育泥质纹层和储层沥青会降低粉砂岩的脆性, 使其在光学显微镜下很难发现微裂缝。

3) 围压极大的抑制了微裂缝的扩展, 随着围压增加, 压裂后岩石内部微裂缝从穿粒张裂缝向晶内裂缝转变。

4) 本文分析岩石在三轴应力压缩破裂过程中能量与脆性的内在关系, 基于峰值后能量守恒原理, 提出新的脆性指标 $[BDI = M/(M - E)]$, 其结果与岩石宏观破裂和显微裂缝特征分析有很好的一致性。
参考文献

tion, Cairo, Egypt, SPE, 2013, 164695.

